## Notice Of Closure

Please note that this website is due to close down on 15th June 2020.

In the interim I will try to move as much content as possible over to my GitHub account. Thanks to everyone who has supported the site over the years.

» Help

# How to calculate intersection points of lines or line sections with rectangles

function fuzz(x, fuzzFactor: double): double;
var
s: string;
begin
s := format('%.6f', [x]);
result := StrToFloat(s);
end;

Warning: the following function assumes a fuzz factor in comparing values of doubles. This is because of the tendency of zero sloped edges to need some help in avoiding div-by-zero errors.

function Intersection (p1, p2, p3, p4: pt; var err: boolean): pt;
var
m1, m2, b1, b2: double;
pResult: pt;
begin
err := false;
if p2.x = p1.x then
m1 := MaxReal
else
m1 := (p2.y - p1.y) / (p2.x - p1.x);
if p4.x = p3.x then
m2 := MaxReal
else
m2 := (p4.y - p3.y) / (p4.x - p3.x);
if m1 = m2 then
begin  {parallel lines never intersect}
err := true;
exit;
end;
b1 := (p1.y) - (m1 * p1.x);
b2 := (p3.y) - (m2 * p3.x);
if m2 = 0 then
pResult.y := p3.y
else
if m1 = 0 then
pResult.y := p1.y
else
pResult.y := ((m1*b2) - (m2 * b1)) / (m1-m2);
if (fuzz(m1, 0.0001)) = fuzz(MaxReal, 0.00001) then
pResult.x := p1.x
else
if m1 = 0 then
if fuzz(m2, 0.00001) = fuzz(MaxReal, 0.00001) then
pResult.x := p3.x
else
pResult.x := (pResult.y - b1)  {/ 0.00001}
else
pResult.x := (pResult.y - b1) / m1;
Result := pResult;
end;
Original resource: The Delphi Pool Cliff W. Estes 2013-04-09 2013-04-09